

SCICHEM: A Puff Model with Chemistry

Part 2: Ozone and Particulate Matter

Eladio Knipping, Naresh Kumar Environment Sector Electric Power Research Institute

Presentation at EPA Regional, State and Local (RSL) Modelers Workshop

Salt Lake City, UT

May 20, 2014

Acknowledgements

- Sage Management
 - Biswanath Chowdhury
 - Douglas Henn
 - Ian Sykes
- ENVIRON Corporation
 - Prakash Karamchandani
 - Bart Brashers
 - Greg Yarwood

SCICHEM Full Chemistry Description

- Full treatment of chemistry and dry and wet deposition, similar to treatments in photochemical grid models, such as CMAQ and CAMx
- CB05 gas-phase chemistry
- CMAQ AERO5 aerosol module, including ISORROPIA and SOA modules
- RADM aqueous-phase chemistry

SCICHEM for Secondary Pollutants (Long-Range Applications)

Evaluation Study

 Model evaluation for reactive gases using aircraft plume measurements, e.g., Cumberland plume

Regulatory Applications

- Single-source Class I area impact studies, e.g., Four Corners
- Background chemistry based on grid model (CMAQ) simulation results

Background Chemistry Specification

- Monthly average, diurnally varying ambient concentration files generated for a representative year for eight regions of the contiguous US (CONUS)
 - Regions based on the Regional Planning Organizations (RPOs) modeling domains
- Calculated from a 36 km CONUS simulation with CMAQ, using the 2005 inputs for the Cross-State Air Pollution Rule (CSAPR)
 - The CMAQ results are horizontally averaged over a given region and hourly varying concentrations are provided for three vertical layers (0 to 300 m, 300 to 1000 m, and 1000 to 3000 m) for each month
- Two other options:
 - Constant values for all background species
 - Prescribe full 4-D background derived from a photochemical model simulation

Background Chemistry Regions

Cumberland Plume Comparisons at 20 km Downwind

Cumberland Plume Comparisons at 55 km Downwind

Four Corners (FC) Single-Source Application

- 4-km domain
- Annual WRF meteorology converted to SCICHEM MEDOC format files using MMIF 3.1
- Background chemistry for "WRAP South" region
- Annual simulation for EGU1 impacts
- Representative results shown for 17-day simulation (July 15-31) included with SCICHEM 3.0b2

Ozone: Noon, July 31, 2005

Four Corners
O3 1 hr Average Concentration
31-Jul-05 11:00L (16.5 days)

PM_{2.5}: Noon, July 31, 2005

Four Corners
PM2.5 1 hr Average Concentration
31-Jul-05 11:00L (16.5 days)

Potential Modified Regions

- Different regions for background chemistry could be defined based on states, groups of states or partial states, as shown to the left
- Plumes are bound to transport across regions, so modeling could be performed with different backgrounds to test the sensitivity of results to those assumptions

SCICHEM Runtimes

- System:
 - Linux workstation (4 Processor Intel Core2 Quad CPU Q9650 @3.00GHz)
- 15-hour TVA plume study (full chemistry): 5 minutes
 - Extrapolates to ~50 hours for full year
- Annual Four Corners simulation (full chemistry): 80 hours

SCICHEM Summary

- The full chemistry version of SCICHEM incorporates chemistry from highly tested Eulerian models
- SCICHEM has been tested against aircraft data with favorable performance
- SCICHEM 3.0 can be an appropriate model for single-source O_3 and $PM_{2.5}$ applications
- Release of SCICHEM 3.0 Beta 2 will occur in first half of 2014
 - http://sourceforge.net/projects/epri-dispersion/
- Await feedback from users and then formally release final version

